[image: image1.bmp]

List of Abbreviations

AICTDA – Amhara Information and Communication Technology Development Agency

CPU – Central Processing Unit

CVS – Concurrent Versions System

DFD – Data Flow Diagram

GUI – Graphical User Interface

I/O – Input Output

OO –Object Oriented

PDL – Procedural Description Language

SDD – Software Design Description

SDLC –Software Development Life Cycle

SRS – Software Requirement Specification

UI – User Interface

Contents Page

Background………………………………………………………………………………..1

Introduction
2
Audience
3
Scope
3
Purpose
3
Implementation
4
1. Standards for SDLC……………………………………………………………….........5
1.1 Waterfall Model....………………………………………………………….....7
1.2 Iterative Model…………………………………………………………….…..7
2. Software Documentaion
9
2.1 Document Template………………………………………………………….11
2.2 Software Requirement Specification ………………………………………..12
2.2.1 Characteristics of SRS……………………………………………..12
2.2.2 SRS Deliverable Contents…………………………………………12
2.3 Software Design Description…………………………………….…………..21
2.3.1 Characteristics of SDD………………………………….…........…21
2.3.2 SDD Deliverable Contents…………………………..………….…22
2.4 Test Plans ……………………………………………………..……………..29
2.4 Characteristics of Test Plan……………………………….……..…..29
2.4.2 Test Plan Deliverable Contents……………………………....……29
3.Graphical User Interface Standard………………………………….…...………….…31
3.1 Rules of Interface Standard……………………………………….…………31
3.2 Common Standards…………………………………………………….…….34
3.2.1 Required UI Elements……………………………………………...34
3.2.2 Controls……………………………………………...……………..37
3.2.3 Field Prompts………………………………………………………39
3.2.4 Practical Use of Color……………………………….……………..40
3.3 A reserved-icon table containing standard approved icons ...…….…....……41
3.3.1 Control Design ………………………………………………….41
3.3.2 Interaction with the User………………………………………..…48
3.3.3 General Screen Layout…………………………………….………48
3.4 Guidelines for good UIs……………………………………………………..53
4. Source Code Documentation
56
 4.1.1.File Comments
57
 4.1.2.Function Comments
58
 4.1.3.In-Line Comments
60
 4.1.4.README Files
61
4.2 User Level Documentation
61
4.3 Libraries
62

 HYPERLINK \l "_Toc167172501"

4.4
 Coding Style
62
4.4.1 Compilation
62
4.4.2 Scope and Definitions
62
4.4.3 Indentation
63
4.4.4 Braces
63
4.5 Identifier Naming Style
64
 4.5.1 Functions…
65
 4.5.2 Variables
65
 4.5.3 Macros
66
 4.5.4 Types
66
4.6 Global Variables
67
4.7 Header Files
68
 4.7.1 Contents
68
 4.7.2 Nested Inclusion
69
4.8 Directory Structure
70
 4.8.1 Master Directory
71
4.8.2.Bin Directory
71
4.8..3.Lib Directory
72
4.8.4.Include Directory
72
4.8.5.Src Directory
72
4.8.6.Man Directory
74
4.8.7.Doc Directory
74
4.8.8.Data Directory
74
4.9 Tools and Utilities
75
4.9.1.Makefiles
75
4.9.2.CVS
76
APPENDIX A
77

Background
The Amhara Region ICT Development Agency established in 2002, formerly established as an ICT Unit in 1996 EYC for the exclusive management of ICT development strategies in the region. The Amhara Region ICT Development Agency is organized at the Regional, Zone and Woreda levels aiming at to facilitate and implement ICT as enabler in Government organizations and develop ICT itself as an economic sector in the Region. The Agency is expected to bring about adequate, current and quality information to public and government sectors to be able to provide their service provision effectively and efficiently.

The Agency is also expected to expand information and communication technology in the Region by realizing joint and integrated working systems together with different stakeholders thereby putting in place reliable information infrastructure.

Introduction
The Software Standard and Guideline (hereinafter referred to as "Standard &Guideline") is designed to support all software’s developed for Amhara Region;

The document include a standard, protocol, and other common format of a document, file, or data transfer accepted and used by the Agency while working on one or more than one software programs. Software standards enable interoperability between different programs created by different developers. Procedures that contribute to quality software.

The purpose of this standard is to establish uniform requirements for software development and documentation. The primary benefit of adhering to software standards is efficiency. Standards enable each member of a software team to work anywhere in the source code without needing to recognize and adopt a different programming style. More importantly, any programmer can look anywhere in the sources with reliable expectations about how the code will be structured, what objects are, and how to find what they need. In addition, maintenance, revision and shared use of code are simplified. It is crucial to recognize that following one standard consistently is much more important than the details of the standard itself.

Guidelines are always open to revision and in instances where they are not followed, a brief comment is usually sufficient to keep other developers informed about what to expect.

This section is structured to be usable as a reference guide to Amhara information and communication technology development agency (AICTDA) and Regional organizations as well. It provides the underlying motivation for some standards. It is organized as follows: 1.0 Software Documentation Standard and guideline 2.0 Graphical user interface standard and guideline 3.0 Test Code Documentation ; 4.0 contains standards for structure, maintenance and archival of software systems; and 5.0 lists conventions and suggestions for common tools and utilities.

Audience

This Software standards and guidelines are for Amhara Region software developers developing new software’s, developing government software’s, and Software development consultants and senior managers who are responsible for the success of their work.
Scope

The provisions of this document apply to Government Software’s regarding Software development and maintenance. These guidelines don’t apply to website applications.

Purpose

The purpose of this document is to establish common and uniform standards for Government Agencies regarding Software’s, usability, accessibility, presentation, content and functionality. The Guidelines will help to ensure that Government information and services are provided to a consistently high standard. This will help to ensure user confidence in Government information and services, and encourage further uptake of services. Government Software’s that apply these guidelines will be rich in authoritative content, well designed, with relevant Government information.

Implementation

Successful use of the Standard and Guidelines depends on how they are disseminated and used within an organization. Simply providing the document to designers and managers may not be enough to spur the adoption and use of these standard and guidelines. To support the effective use of these standard and guideline, the first option is users can read the document from beginning to end to become familiar with all of the standards and guidelines. Otherwise, the standard and guidelines can be used as a reference to answer specific Software development questions.
Standards for SDLC

1. 1.0 Standards for SDLC
A SDLC is a well-defined, disciplined, and standard approach used in developing applications which provides:

· a methodical approach to solving business and information technology problems

· a means of managing, directing, monitoring and controlling the process of application/software building, including:

· a description of the process - steps to be followed

· deliverables - reports/programs/documentation/etc

Benefits of using a SDLC methodology include:

· Has a proven framework

· Consistency and uniformity - methods and functions

· Results/Deliverables

· Facilitates information exchange

· Defines and focuses on roles and responsibilities

· Has a predefined level of precision to facilitate a complete, correct and predictable solution
· Enforces planning and control

In Scope
The application development standard will highlight key characteristics of a software development lifecycle methodology and provide guidance for a generic:

· Waterfall development; and

· Iterative development

Where applicable, adoption of industry standards methodologies will be recommended and referenced.
1.1 WATERFALL SDLC

The waterfall model is a popular version of the software development life cycle model for software engineering. Often considered the classic approach to the application/software development life cycle, the waterfall model describes a linear and sequential development method with distinct goals for each phase of development.

The seven waterfall phases are:

1. Requirement Gathering – Collecting the business requirements/needs

2. Analysis – Business and Requirement Analysis

3. Design – Architecture and application design

4. Coding - Development/Construction/Programming

5. Testing – Bug fixes, error corrections, quality assurance

6. Implementation – Deploying the application into the production environment

7. Post Implementation – maintenance and review

1.2 ITERATIVE SDLC

ITERATIVE AND INCREMENTAL DEVELOPMENT is an application/software development process developed in response to the weaknesses of the more traditional waterfall model.

The iterative process starts with architecturally significant subset of the application/software requirements (often the high risk requirements) and iteratively enhances the evolving sequence of versions until the full application/software is implemented. At each iteration, design modifications are made and new functional capabilities are added.
This allows the project team to take advantage of what was being learned during the development of earlier, incremental, deliverable versions of the application/software. The product is defined as completed when it satisfies all of its requirements.

This iterative process uses the elements of the waterfall model in the four iterative phases, which are:

1. Inception – Gathering of business requirements/needs

2. Elaboration – Business/Requirement Analysis and Architecture and application design

3. Construction - Development/Construction/Programming/testing

4. Transition – Implementation of the application

Within the four iterative phase inferences can be made to map to the seven Waterfall phases. Regardless of what SDLC selected, any development initiative will need to go through the activities related to the seven Waterfall phases.
2. Software Documentation Standard

The Importance of Software Documentation

Software documentation pervades the software life cycle. It is the visible part of the software process. Without it, software cannot be maintained. Without it, users cannot train and they virtually cannot use the software. Without it new developers would have to re-invent the wheel in software development. Software documentation is the most important manifestation of software. It is the guide through the software maze.

Functions of Software Documentation

· All software life cycle processes in the development of any software are recorded as software documentation. Software documentation serves as written information on requirements definitions, overall system specifications, specification of each component and the comprehensive test and maintenance plans. Configuration management tools are also very useful in software documentation.

Software Documentation for Developers

· The importance of software documentation to software developers lies in the fact that software documentation contains information on the operations of the software system. This information makes it possible to reproduce the software or adapt it to maintenance. The type of information documented is usually worth millions to the software company. Such information could be lost if not documented as developers come and go.

Software Documentation for End-Users

· Software Documentation helps end-users appreciate the software faster.

End-user manuals facilitate the interaction of the end-user with the computer. A training manual is an example of a user-oriented manual. It reduces the learning time to productive use of the software, thus saving the end-user million of dollars. End-user documents may also be a reference manual that details the workings of the system or a system administrator’s guide that details how to operate and maintain the system.
2.1 Document Template
 General Instructions
 Use this to structure the Software document.

• Provide a table of contents.

• Provide a cover page that includes the phase, name, and the current date.

• Number the pages of the document.

• Number and label all figures. Refer to the figures by number in the text.

• All sections should have an introductory sentence or two.

• Do not use vague words and phrases such as may, might, could, possibly, should, assumed to be, some, a little, and a lot. Use strong, definite words and phrases such as shall, will, will not, can, and cannot.

• Watch your spelling, punctuation, and grammar. It is a reflection on your professionalism.

• As before, your document must be in either Adobe Portable Document Format (PDF) ASCII text formatted to 72 columns (txt) or GIF / JPEG / TIFF (for images or scanned-in handwritten stuff, not recommended)

• Provide definitions of all terms, acronyms and abbreviations needed for the

Document.

Be sure that your document is:
• Complete - No information is missing

• Clear - Every sentences meaning must be clear to all parties

• Consistent - The writing style and notation is consistent throughout the document and the document does not contradict itself.

• Verifiable - All facts stated are verifiable

2.2 Software Requirements Specification
2.2.1 Characteristics of SRS
The Software Requirements Specification, which is often referred to by a number of other names, such as the Requirements Definition or the Structured System Requirement, must:

• Correctly define all of the software requirements;

• exclude any design or implementation details (these will be described in the design stage of the project); and

• not impose additional constraints on the software.

A good SRS must be written for the appropriate audience, generally the client, and must be:

• correct;

• Unambiguous;

• complete;

• Consistent;

• Verifiable;

• Modifiable; and

• Traceable;
2.2.2 SRS Deliverable Contents
The Software Requirements Specification must consist of at least the following components: project objectives; project background; document purpose; system scope; functional description; user interface; and software project management plan. The actual system can be modeled using the Unified Modeling Language (UML) diagrams, a data model, a process model or a combination of these techniques. These components will now be discussed in more detail.

Introduction

The document purpose explains the reason for preparing the document. The primary purpose for preparing a SRS document should be to provide a complete and comprehensive description of the requirements of the proposed business system.

Project Background

This brief description outlines the situation that led to the project proposal. It usually states the business conditions, problems and opportunities, from a business perspective, which contributed to the instigation of this project.
Purpose

Identify the product whose software requirements are specified in this document, including the revision or release number. The objectives for the project clearly state the desired business outcomes that are expected to be achieved by the system.

Intended Audience and Reading Suggestions

Describe the different types of reader that the document is intended for, such as developers, project managers, marketing staff, users, testers, and documentation writers. Describe what the rest of this SRS contains and how it is organized. Suggest a sequence for reading the document, beginning with the overview sections and proceeding through the sections that are most pertinent to each reader type.

Project Scope

The boundary of the system is defined in the system scope. The overall functions of the system should be described in general terms and the system scope must identify the inter-related components that will be included in the system and the environment that is immediately outside the system boundary. An SRS that specifies the next release of an evolving product should contain its own scope statement as a subset of the long-term strategic product vision.

References

List any other documents or Web addresses to which this SRS refers. These may include user interface style guides, contracts, standards, system requirements specifications, use case documents, or a vision and scope document. Provide enough information so that the reader could access a copy of each reference, including title, author, version number, date, and source or location.

Overall Description

Product Perspective

Describe the context and origin of the product being specified in this SRS. For example, state whether this product is a follow-on member of a product family, a replacement for certain existing systems, or a new, self-contained product. If the SRS defines a component of a larger system, relate the requirements of the larger system to the functionality of this software and identify interfaces between the two. A simple diagram that shows the major components of the overall system, subsystem interconnections, and external interfaces can be helpful.
Product Features

Summarize the major features the product contains or the significant functions that it performs or lets the user perform. Details will be provided in Section 3, so only a high level summary is needed here. Organize the functions to make them understandable to any reader of the SRS. A picture of the major groups of related requirements and how they relate, such as a top level data flow diagram or a class diagram, is often effective.
User Classes and Characteristics

Identify the various user classes that you anticipate will use this product. User classes may be differentiated based on frequency of use, subset of product functions used, technical expertise, security or privilege levels, educational level, or experience. Describe the pertinent characteristics of each user class. Certain requirements may pertain only to certain user classes. Distinguish the favored user classes from those who are less important to satisfy.

Operating Environment

Describe the environment in which the software will operate, including the hardware platform, operating system and versions, and any other software components or applications with which it must peacefully coexist.

Design and Implementation Constraints

Describe any items or issues that will limit the options available to the developers. These might include: corporate or regulatory policies; hardware limitations (timing requirements, memory requirements); interfaces to other applications; specific technologies, tools, and databases to be used; parallel operations; language requirements; communications protocols; security considerations; design conventions or programming standards (for example, if the customer’s organization will be responsible for maintaining the delivered software).

User Documentation

List the user documentation components (such as user manuals, on-line help, and tutorials) that will be delivered along with the software. Identify any known user documentation delivery formats or standards.
Assumptions and Dependencies

List any assumed factors (as opposed to known facts) that could affect the requirements stated in the SRS. These could include third-party or commercial components that you plan to use issues around the development or operating environment, or constraints. The project could be affected if these assumptions are incorrect, are not shared, or change. Also identify any dependencies the project has on external factors, such as software components that you intend to reuse from another project, unless they are already documented elsewhere (for example, in the vision and scope document or the project plan).

System Features

This template illustrates organizing the functional requirements for the product by system features, the major services provided by the product. You may prefer to organize this section by use case, mode of operation, user class, object class, functional hierarchy, or combinations of these, whatever makes the most logical sense for your product.

System Feature 1

Don’t really say “System Feature 1.” State the feature name in just a few words.
Description and Priority
Provide a short description of the feature and indicate whether it is of High, Medium, or Low priority. You could also include specific priority component ratings, such as benefit, penalty, cost, and risk (each rated on a relative scale from a low of 1 to a high of 9).
Stimulus/Response Sequences
List the sequences of user actions and system responses that stimulate the behavior defined for this feature. These will correspond to the dialog elements associated with use cases.
Functional Requirements
Itemize the detailed functional requirements associated with this feature. These are the software capabilities that must be present in order for the user to carry out the services provided by the feature, or to execute the use case. Include how the product should respond to anticipated error conditions or invalid inputs. Requirements should be concise, complete, unambiguous, verifiable, and necessary..

Each requirement should be uniquely identified with a sequence number or a meaningful tag of some kind.

REQ-1:

REQ-2:

System Feature 2 (and so on)

External Interface Requirements

User Interfaces

Describe the logical characteristics of each interface between the software product and the users. This may include sample screen images, any GUI standards or product family style guides that are to be followed, screen layout constraints, standard buttons and functions (e.g., help) that will appear on every screen, keyboard shortcuts, error message display standards, and so on. Define the software components for which a user interface is needed. Details of the user interface design should be documented in a separate user interface specification.
Hardware Interfaces

Describe the logical and physical characteristics of each interface between the software product and the hardware components of the system. This may include the supported device types, the nature of the data and control interactions between the software and the hardware, and communication protocols to be used.

Software Interfaces

Describe the connections between this product and other specific software components (name and version), including databases, operating systems, tools, libraries, and integrated commercial components. Identify the data items or messages coming into the system and going out and describe the purpose of each. Describe the services needed and the nature of communications. Refer to documents that describe detailed application programming interface protocols. Identify data that will be shared across software components. If the data sharing mechanism must be implemented in a specific way (for example, use of a global data area in a multitasking operating system), specify this as an implementation constraint.
Communications Interfaces

Describe the requirements associated with any communications functions required by this product, including e-mail, web browser, network server communications protocols, electronic forms, and so on. Define any pertinent message formatting. Identify any communication standards that will be used, such as FTP or HTTP. Specify any communication security or encryption issues, data transfer rates, and synchronization mechanisms.

Other Nonfunctional Requirements

Performance Requirements

If there are performance requirements for the product under various circumstances, state them here and explain their rationale, to help the developers understand the intent and make suitable design choices. Specify the timing relationships for real time systems. Make such requirements as specific as possible. You may need to state performance requirements for individual functional requirements or features.
Safety Requirements

Specify those requirements that are concerned with possible loss, damage, or harm that could result from the use of the product. Define any safeguards or actions that must be taken, as well as actions that must be prevented. Refer to any external policies or regulations that state safety issues that affect the product’s design or use. Define any safety certifications that must be satisfied.
Security Requirements

Specify any requirements regarding security or privacy issues surrounding use of the product or protection of the data used or created by the product. Define any user identity authentication requirements. Refer to any external policies or regulations containing security issues that affect the product. Define any security or privacy certifications that must be satisfied.
Software Quality Attributes

Specify any additional quality characteristics for the product that will be important to either the customers or the developers. Some to consider are: adaptability, availability, correctness, flexibility, interoperability, maintainability, portability, reliability, reusability, robustness, testability, and usability. Write these to be specific, quantitative, and verifiable when possible. At the least, clarify the relative preferences for various attributes, such as ease of use over ease of learning.

Other Requirements

Define any other requirements not covered elsewhere in the SRS. This might include database requirements, internationalization requirements, legal requirements, reuse objectives for the project, and so on. Add any new sections that are pertinent to the project.
Appendix A: Glossary

Define all the terms necessary to properly interpret the SRS, including acronyms and abbreviations. You may wish to build a separate glossary that spans multiple projects or the entire organization, and just include terms specific to a single project in each SRS.

Appendix B: Analysis Models

Optionally, include any pertinent analysis models, such as data flow diagrams, class diagrams, and state-transition diagrams.
2.3 Software Design Description
2.3.1 Characteristics of SDD
The Software Design Description, which is also referred to by a number of other names, such as the System Specification or the Technical Specification, is the primary medium for communicating software design information.

The Software Design Description must:

• describe the overall software structure;

• identify the required software components;

• identify the relationship between software components;

• give consideration to:

• any required software interfaces

• any required security characteristic

• any required error handling and recovery attributes;

• provide format of input/output data;

• establish required data naming conventions;

• define the format of required data structures;

• define the data fields and purpose of each required data element; and

• provide the specifications for all the programs in the system.

A properly written SDD specifies the system design required to satisfy the Software Requirements Specification.

A good SDD must be written for the appropriate audience, technical staff, and must be:

• correct;

• Unambiguous;

• complete;

• Consistent;

• Verifiable;

• Modifiable; and

• Traceable.
2.3.2 SDD Deliverable Contents
Software design is a process by which the software requirements are translated into a representation of software components, interfaces, and data necessary for the implementation phase. The SDD shows how the software system will be structured to satisfy the requirements. It is the primary reference for code development and, therefore, it must contain all the information required by a programmer to write code. The SDD is performed in two stages. The first is a preliminary design in which the overall system architecture and data architecture is defined. In the second stage, i.e. the detailed design stage, more detailed data structures are defined and algorithms are developed for the defined architecture. Here is the description of the contents (by section and subsection) of the proposed template for software design specifications
Introduction
This space may be used to provide an introduction for the design and ties to other project materials.
Purpose

Identify the purpose of this SDD and its intended audience.
Scope

Provide a description and scope of the software and explain the goals, objectives and benefits of your product. This will provide the basis for the brief description of your product.
Overview

Provide an overview of this document and its organization.
Reference Material

This section is optional.

List any documents, if any, which were used as sources of information for the test plan.

Definitions and Acronyms

This section is optional.

Provide definitions of all terms, acronyms, and abbreviations that might exist to properly interpret the SDD. These definitions should be items used in the SDD that are most likely not known to the audience.
SYSTEM OVERVIEW

Brief high-level description of system structure, functionality, interactions with external systems, system issues and provide any background information if necessary.
Assumptions

Describe any assumption, background, or dependencies of the software, its use, the operational environment, or significant project issues

SYSTEM ARCHITECTURE

 Architectural Design
Develop a modular program structure and explain the relationships between the modules to achieve the complete functionality of the system. This is a high level overview of how responsibilities of the system were partitioned and then assigned to subsystems. Identify each high level subsystem and the roles or responsibilities assigned to it. Describe how these subsystems collaborate with each other in order to achieve the desired functionality. Don’t go into too much detail about the individual subsystems. The main purpose is to gain a general understanding of how and why the system was decomposed, and how the individual parts work together. Provide a diagram showing the major subsystems and data repositories and their interconnections. Describe the diagram if required.
Decomposition Description
Provide a decomposition of the subsystems in the architectural design. Supplement with text as needed. You may choose to give a functional description or an object oriented description.

For a functional description, put top level data flow diagram (DFD) and structural decomposition diagrams. For an OO description, put subsystem model, object diagrams, generalization hierarchy diagram(s) (if any), aggregation hierarchy diagram(s) (if any), interface specifications, and sequence diagrams here.
DATA DESIGN

 Data Description
Explain how the information domain of your system is transformed into data structures.

Describe how the major data or system entities are stored, processed and organized. List any databases or data storage items.
 Data Dictionary

Alphabetically list the system entities or major data along with their types and descriptions. If you provided a functional description in Section 4.2, list all the functions and function parameters. If you provided an OO description, list the objects and its attributes, methods and method parameters.

 COMPONENT DESIGN
In this section, we take a closer look at what each component does in a more systematic way. If you gave a functional description in section 4.2, provide a summary of your algorithm for each function listed in 4.2 in procedural description language (PDL) or pseudocode. If you gave an OO description, summarize each object member function for all the objects listed in 4.2 in PDL or pseudocode. Describe any local data when necessary.

Detailed System Design
Most components described in the System Architecture section will require a more detailed discussion. Other lower-level components and subcomponents may need to be described as well. Each subsection of this section will refer to or contain a detailed description of a system software component. The discussion provided should cover the following software component attributes:
Classification

The kind of component, such as a subsystem, module, class, package, function, file, etc.

Definition
The specific purpose and semantic meaning of the component. This may need to refer back to the requirements specification.
Responsibilities

The primary responsibilities and/or behavior of this component. What does this component accomplish? What roles does it play? What kinds of services does it provide to its clients? For some components, this may need to refer back to the requirements specification.
Constraints

Any relevant assumptions, limitations, or constraints for this component. This should include constraints on timing, storage, or component state, and might include rules for interacting with this component (encompassing preconditions, post conditions, invariants, other constraints on input or output values and local or global values, data formats and data access, synchronization, exceptions, etc.)
Composition

A description of the use and meaning of the subcomponents that are a part of this component.
Uses/Interactions

A description of these components collaborations with other components. What other components is this entity used by? What other component does this entity use (this would include any side-effects this entity might have on other parts of the system)? This concerns the method of interaction as well as the interaction itself.
Resources

A description of any and all resources that are managed, affected, or needed by this entity. Resources are entities external to the design such as memory, processors, printers, databases, or a software library. This should include a discussion of any possible race conditions and/or deadlock situations, and how they might be resolved.
Processing

A description of precisely how this component goes about performing the duties necessary to fulfill its responsibilities. This should encompass a description of any algorithms used; changes of state; relevant time or space complexity; concurrency; methods of creation, initialization, and cleanup; and handling of exceptional conditions.

2.3.3 Advisory Checklist

Architecture

• Is the overall program organization clear, including a good architectural overview and justification?

• Are modules well defined including their functionality and interfaces to other modules?

• Are all major data structures described and justified?

• Is the database organization and content specified?

• Are all key algorithms described and justified?

• Is the user interface modularized so that changes in it wont affect the rest of the program?

• Is a strategy for handling I/O described and justified?

• Is a coherent error-handling strategy included?

• Are error messages managed as a set to present a clean user interface?

• Is the architecture designed to accommodate likely changes?

• Are the major system goals clearly stated?

• Does the complete architecture hang together conceptually?

• Are you, as a programmer who will implement the system, comfortable with the architecture?
High-Level Design

• Have you used round-trip design, selecting the best of several attempts rather than the first attempt?

• Are you satisfied with the way the program has been decomposed into modules ?

• Are you satisfied with the way that modules have been decomposed into routines?

• Are subprogram boundaries well defined?

• Are subprograms designed for minimal interaction with each other?

• Does the design differentiate between the problem-domain component, the user-interface component, the task-management component and the data-management component?

• Will the program be easy to maintain?

• Does the design account for future extensions to the program?

• Are subprograms designed so that you can use them in other systems?

• Is the design lean? Are all of its parts strictly necessary?

• Does the design use standard techniques and avoid exotic, hard-to-understand elements?
2.4 Test Plans
2.4.1 Characteristics of Test Plans
The test plan should address unit, integration and acceptance test strategies as appropriate. This plan must identify:

• The purpose of the test;

• The approach in performing the test;

• The components to be tested;

• The aggregates and sequence for testing; and

• associated test scripts/cases.

It is important to link the test plan back to the customer’s requirements that are being validated by the test.

2.4.2 Test Plans Deliverable Contents
The test plans must consist of at least the following components: acceptance test strategy; software unit test strategy; system test strategy; and test cases and scripts. A brief description of these components is provided below.

Acceptance Test Strategy

The acceptance test plan must identify activities to be performed to test the deliverable end-customer product. This plan must identify who is responsible for the performance of the acceptance test activities (supplier or customer), and the system configuration requirements for the site. It must also provide a plan for validating that the delivered software satisfies the customer requirements.
Software Unit Test Strategy

The software unit test plan identifies a strategy for verifying unit functionality against the requirements and design. It also specifies how basic program requirements will be verified. Additionally, it provides — at a higher level — a strategy for verifying software features and/or functions that operate as defined in the requirements.

System Test Strategy

The system test plan must identify a strategy for verifying the integration of system components as defined in the system specification. It must provide test coverage for all components of the system including software, hardware, external interfaces, customer documentation, installation activities and conversion programs.

Test Cases and Scripts

Test cases and scripts, which define the purpose, a set of executable test instructions, input data and the expected results, must be provided.
3. Graphical User Interface Standards
3.0 Graphical User Interface Standard
Most modern applications have a very similar layout to their main windows. They offer a view of a document and the controls needed to manipulate it. Feedback of what is happening to the document is usually displayed on a status bar.

Several points must be fulfilled before a piece of software may be termed “user friendly”

To be user friendly, software must be:

· Task-suitable: - Don't offer so much functionality that it confuses the user or harms functionality.

· Understandable: - When the user uses the application for the first time, the user should be able to see quickly what it does and how to use it.

· Navigable: - The user should always be able to tell where he/she/it is. Don't restrict navigation too much.

· Conformable to expectations: - The application should be consistent throughout!

· Tolerant of mistakes: Users are human: - they make mistakes. The application should allow them to Undo (without crashing, in particular).

· Feedback-rich: - The application should always give immediate feedback to the user regarding which actions(s) are being taken.

3.1 Rules of Interface Design
1. Strive for consistency

1. consistent sequences of actions should be required in similar situations

2. identical terminology should be used in prompts, menus, and help screens

3. consistent color, layout, capitalization, fonts, and so on should be employed throughout.

2. Enable frequent users to use shortcuts
1. to increase the pace of interaction use abbreviations, special keys, hidden commands, and macros
3. Offer informative feedback
1. for every user action, the system should respond in some way (for example, a button will make a clicking sound or change color when clicked to show the user something has happened)

4. Design dialogs to yield closure
1. Sequences of actions should be organized into groups with a beginning, middle, and end. The informative feedback at the completion of a group of actions shows the user their activity has completed successfully

5. Offer error prevention and simple error handling
1. design the form so that users cannot make a serious error; for example, prefer menu selection to form fill-in and do not allow alphabetic characters in numeric entry fields

2. if users make an error, instructions should be written to detect the error and offer simple, constructive, and specific instructions for recovery

3. segment long forms and send sections separately so that the user is not penalized by having to fill the form again - but make sure you inform the user that multiple sections are coming up

6. Permit easy reversal of actions
7. Support internal locus of control
1. Experienced users want to be in charge. Surprising system actions, tedious sequences of data entries, inability or difficulty in obtaining necessary information, and inability to produce the action desired all build anxiety and dissatisfaction

8. Reduce short-term memory load
1. A famous study suggests that humans can store only 7 (plus or minus 2) pieces of information in their short term memory. You can reduce short term memory load by designing screens where options are clearly visible, or using pull-down menus and icons
9. Prevent Errors
1. Steps can be taken to design so that errors are less likely to occur, using methods such as organizing screens and menus functionally, designing screens to be distinctive and making it difficult for users to commit irreversible actions. Expect users to make errors, try to anticipate where they will go wrong and design with those actions in mind.

3.2 Common Standards:
3.2.1 Required UI Elements

· Login Screen
· User ID and Password should be captured

· Password field should be masked

· Errors on invalid credentials should be descriptive

· Field Captions should be same across all the modules

· Change Password Screen
· Old, New and Confirm New should be captured

· All password fields should be masked

· Use of Auto complete feature
· Auto completion feature can be set on for frequently used fields

· It should not be used for fields with sensitive data, such as password input

· Grammar and Spelling
· Text appear in GUI pages should be checked for spelling and Grammar

· MS Word can be used for simple checking
· Logout
· There should be a link to logout from current session

· Session should expire

· Error messages
· Error messages should be descriptive

· Should be consistent

· Should be short

· It would be nice if they are configurable

· Acknowledgments
· User should be acknowledge on events/changing status (e.g. On Update, Delete, Add etc)

· Message should be consistent

· Message should be shorter

· Consistency
· Look and feel should be same in all supported browsers

· Look and feel should be same across all the modules

· Title Text
· Title should be appropriate to the current screen

· Should be short

· Use of controls
· Appropriate controls should be used
· Length of text inputs
· Length of fields should be sufficient for users to enter longest possible value.

· Use of Check boxes vs Radio buttons
· Radio buttons are used when there is a list of two or more options that are mutually exclusive and the user must select exactly one choice.

· Checkboxes are used when there are lists of options and the user may select any number of choices, including zero, one, or several. (e.g. Assign permissions)

· A stand-alone checkbox is used for a single option that the user can turn on or off. (e.g.: Enable /Disable a user)

· Paging
· Paging should be introduced if user has to scroll down to see the list of records.

· Default Values
· The value(s) selected should be a frequently used by user

3.2.2 Controls
Title Bars and Icons:

Windows title bars have lots of uses for the users of our Applications in addition to the obvious ones of dragging and minimize etc they can be used to allow the user to easily identify which window out of a set of windows they require.

If possible choice a different icon for each type of window in your application. The users can then associate the icon with the function and you can remove the function of the window from the title bar. Leaving just the identifying data as the title bar.

Keyboard Control

You may think this is an obvious topic that does not need a mention, but you would be surprised at how many applications that the keyboard functions of the user interface do not work at all or do not work well. Follow these standards to make sure your user interface is keyboard friendly.

Tab Order

Make sure the tab order of your form flows around the controls in the order that the user expects, if this sequence is not obvious (it normally is) then ask the user! Another aspect to consider is the focus starting point, a lot of the time the top left hand corner is the best starting point.

Views and Panels

These are new additions to the GUI interface and are a method for splitting a window into multiple resizable sections each dealing with a slightly different aspect to the application. These can be a great productivity aid for the user BUT make sure there is a keyboard equivalent to the mouse for changing the focus between the views.
Size is everything
Although the contents of this article may seem obvious to some people, you would be surprised at the number of Windows that which although functionally correct look a complete disaster just because the developer did not take the time to get the sizes correct.

Buttons

The first thing is buttons, try to keep the width of a button to a minimum, the prompt should be meaningful but where possible keep it less than 20 characters, use tool tips to add extra narrative if required. The golden rule of buttons is to make sure the width and height of all buttons on the same window are the same. All buttons in your application must be the same height, and if possible make them all the same width.

All controls should be lined up and buttons are no exception, most development tools provide a facility to do this automatically so use the tool, don't use your own judgment. If you have a dialog with buttons on the bottom then right align them with the edge of the rightmost button aligned with the right most edge of the right most control on the window.

Data Lists

The height of a header in a list of data that has a scrollbar should match exactly the height of an arrow header of the scroll bar, even one pixel either way looks very ugly. Try to make any data in the row have a pixel above and below for clearance, this will aid readability for the user. Make sure the right number of rows fits perfectly for the data list height, increase the size of the list a single pixel at a time and run the window, when a new row appears the size of the list is correct. Make sure the data fits the width of the control, only use horizontal scrolling when essential.
Fields

Make sure all of the fields on the window have the same height, unless the field allows a large description and wraps at the edge of the control. Where possible make a vertical lists of fields all the same width, if two or more fields are much shorter than the rest, double them up on a single line and right align then edge of the field to match the longer fields.

Make all the single line field prompts horizontally centered with the control, all other prompts should be aligned the same number of pixels from the top edge as the horizontally aligned prompts.

Dropdown Lists

Make sure all dropdown lists have the same number of items available for selection and that the number of rows shown fit exactly, no little blank spaces where half a row could fit. Eight is a good number as it does not obscure too much of the display but allows the user a good view of the data. You should not use horizontal scrolling in a dropdown list. You can however make the width of the dropdown wider then the width of the dropdown control, this is especially useful when you want to show extra fields in the dropdown that are not displayed in the edit field.

3.2.3 Field Prompts

In a previous article on the use of color in applications, it is recommended not using color for special meanings in your application, for example red backgrounds for mandatory columns. If you followed those guidelines your application will look more professional but you will have lost the indication to the user of which columns are mandatory.

These are two great uses for field prompts, you could extend them slightly but I would not recommend using more than 3 or 4 different prompts.
Visual Cues

When using an application there often little features that can aid a user in performing a task. Like all visual operations there is normally a manual method for performing the same operation. But the visual operation is simpler and quicker for the user and they can save time by using this feature.

However the visual operation is only quicker for the user if they know its there! So this article deals with how we can inform the user that these little features are available and how we can do this in a standard manner.

Your application should be able to inform the user about the feature or at least give them an indication that there may be some special feature that they may know about.

Pointers

The easiest way to alert the user to a feature is by changing the pointer to something other than the standard mouse pointer

3.2.4 Practical Use of Color

When To Use Which Colure

The following list describes common situations and the colours that should be used in those situations.

· All windows backgrounds should be Button Face.

· All command button backgrounds should be Button Face and the text should be Window Text.

· Editable fields should have a background colour of Windows Background and the text should be Windows Text with a 3D lowered border. Do not use any other colours for special meanings for example; all red fields are mandatory. What if your user is cooler blind and cannot see the red? The same goes for Listboxes, Checkboxes, Radio buttons and all the other standard controls.

· Non Editable fields should have a background of Button Face to indicate to the user that the field is not editable. If you just disable the field they will try to click into it.

· A List of multiple columns that are not editable but are used for selection purposes should have a background of Windows Background and a text colure of Windows Text with Dark blue being used to indicate the selected row. If multiple rows can be selected then blue indicates a selected row and a dashed rectangle indicates the current row. The header row of the list should be windows background with Windows Text for the text and a 3D raised border.

· A list of multiple editable columns should have a background colure of Button Face and should follow the normal edit field rules described above for the editable columns.

· Group boxes should always be 3D lowered with white and dark Grey for the high and lo lights of the rectangle. The text should be Windows Text.

· Tab pages should be Button Face. Not a different colure for each tab!

 Where possible any custom icons or images used in the application should make sure the background colure of the image is correctly masked to match the background colure underneath the image. For example if you have a company logo with a Grey background on your logon window with a Windows Background for its colure then anyone who does not use Grey for their windows background will see an ugly Grey border around your image.

Following these simple colures consistently will help to give you application a more professional look and feel which the tired eyes your users will appreciate.

3.3 A reserved-icons table containing standard approved icons.
3.3.1 Control Design
Controls are the visual elements that let the user interact with the application. GUI designers are faced with an unending array of controls to choose from. Each new control brings with it expected behaviors and characteristics. Choosing the appropriate control for each user task will as a guideline for control usage in your screens.

Acceptable date formats

[shortdate]

[longdate]

YYYY-MM-DD

DD Month, YYYY

Month DD, YYYY

DD-Mon-YYYY

YYYYMMDD

Where:
All other characters are taken to be literals.

Fonts

Suggested Default Font

The suggested font for use is an 8pt MS Sans Serif font. This is the default system font and it is recommended in the interface guidelines.

Use of Color

In General

Color may be used with great effect to highlight important elements of the interface. However, too much color in one interface will generally lead to confusion on the part of the user.
Screen Layout - For Each Application

Start Application by accessing the URL.

The Loading message should show the application name and version number.

Login is necessary.

Logout from the application should result in an “Are you Sure” message box.

On each window, if the application is busy, then the hour glass should be displayed. If there is no hour glass (e.g. alpha access enquiries) then some enquiry in progress message should be displayed.

All screens should have a Help button, F1 should work doing the same.

For Each Window in the Application

If Window has a Minimize Button, click it.
Window should return to an icon on the bottom of the screen.

This icon should correspond to the Original Icon under Program Manager.

Double Click the Icon to return the Window to its original size.

The window caption for every application should have the name of the application and the window name - especially the error messages. These should be checked for spelling, English and clarity, especially on the top of the screen. Check does the title of the window makes sense.

Check all text on window for Spelling/Tense and Grammar.
Use TAB to move focus around the Window. Use SHIFT+TAB to move focus backwards. Tab order should be left to right, and Up to Down within a group box on the screen. All controls should get focus - indicated by dotted box, or cursor. Tabbing to an entry field with text in it should highlight the entire text in the field.

If a field is disabled (greyed) then it should not get focus. It should not be possible to select them with either the mouse or by using TAB. Try this for every greyed control.

Never updateable fields should be displayed with black text on a grey background with a black label.

All text should be left-justified, followed by a colon tight to it.

In a field that may or may not be updateable, the label text and contents changes from black to grey depending on the current status.

List boxes are always white background with black text whether they are disabled or not. All others are grey.

When returning return to the first screen cleanly i.e. no other screens/applications should appear.

In general, double-clicking is not essential. In general, everything can be done using both the mouse and the keyboard.

All tab buttons should have a distinct letter.

Text Boxes

Move the Mouse Cursor over all Enterable Text Boxes. Cursor should change from arrow to Insert Bar. If it doesn't then the text in the box should be grey or non-updateable. Refer to previous page.

Enter text into Box.

Try to overflow the text by typing to many characters - should be stopped Check the field width with capitals W.

Enter invalid characters - Letters in amount fields, try strange characters like +, - * etc. in All fields.

SHIFT and Arrow should Select Characters. Selection should also be possible with mouse. Double Click should select all text in box.

Option (Radio Buttons)

Left and Right arrows should move 'ON' Selection. So should Up and Down. Select with mouse by clicking.

An OptionButton, also known as a RadioButton, is a control that is represents a choice, usually of a property, or option, such as 'Read Only' or 'Sort Ascending'. It is advisable to avoid using a RadioButton to start an action such as 'Save' or 'Close'.

RadioButtons are grouped in logical sets of two or more and appear as a set of small circles with descriptive text to the right. The Windows 95 Interface Guidelines suggests using sentence capitalization; only capitalize the first letter of the first word, unless there are specific reasons otherwise (such as an acronym specific to the application, a proper noun, etc.). The text label can have multiple lines, and in this case top alignment with the button is suggested.

Check Boxes
CheckBoxes are controls used to set independent options; that is, one checkbox's state is independent of another checkbox. The control is a square with text, generally to the right. A checkbox generally has two states, on and off. When selected (on), they contain a checkmark; when they are not selected (off), they are empty. A third state commonly used to denote 'Unknown', displays as a filled box with a checkmark.

CheckBoxes can be grouped in a GroupBox, but that does not affect the CheckBoxes' behavior; they are still independent.
Command Buttons

If Command Button leads to another Screen, and if the user can enter or change details on the other screen then the Text on the button should be followed by three dots.

All Buttons except for OK and Cancel should have a letter Access to them. This is indicated by a letter underlined in the button text. The button should be activated by pressing ALT+Letter. Make sure there is no duplication.

Click each button once with the mouse - This should activate Tab to each button - Press SPACE - This should activate Tab to each button - Press RETURN - This should activate

The above are VERY IMPORTANT, and should be done for EVERY command Button.

Tab to another type of control (not a command button). One button on the screen should be default (indicated by a thick black border). Pressing Return in ANY no command button control should activate it.

If there is a Cancel Button on the screen, then pressing <Esc> should activate it.

If pressing the Command button results in uncorrectable data e.g. closing an action step, there should be a message phrased positively with Yes/No answers where Yes results in the completion of the action.

A CommandButton is a control, usually rectangular in shape, that has a label. The label can be text or graphic (A CommandButton with a graphic label is commonly referred to as a PictureButton). The label should represent the action the CommandButton is to start; i.e., a CommandButton with a label of Close will execute a close script. For buttons that will prompt the user for more information, the label text is generally followed by an ellipsis (. . .).

Access keys, shortcut keys, and tab keys can be used to navigate among CommandButtons. Additionally the space bar and/or enter key can activate a CommandButton that has focus. All command buttons (with the exception of OK, Cancel and PictureButtons with no text) should have a unique shortcut key.

You can define a CommandButton as being the default button in a window. If you define a default CommandButton, the user's pressing the ENTER key when the focus is not on another CommandButton is the same as clicking the default button.

The normal appearance of a control is called the “up” state. Refer to the “Interaction with the User” section for additional guidelines.

Command Button Functionality

The definitions below are guidelines for common functionality of the most often used command buttons.

Drop Down List Boxes

Pressing the Arrow should give list of options. This List may be scrollable. You should not be able to type text in the box.

Pressing a letter should bring you to the first item in the list with that start with that letter. Pressing ‘Ctrl - F4’ should open/drop down the list box.

Spacing should be compatible with the existing windows spacing (word etc.). Items should be in alphabetical order with the exception of blank/none which is at the top or the bottom of the list box.

Drop down with the item selected should be display the list with the selected item on the top.

Make sure only one space appears, shouldn't have a blank line at the bottom.
3.3.2 Interaction with the User

Login

· Provide a login area for registered users.

· Users must be registered and logged in to gain access.

· Provide a “remember me” option. This option appears in login area.

· Offer users a way to obtain lost passwords. This option appears in login area.

· Offer users a way to register if they are unregistered. This option appears in login area.

Graphic Design

· Make sure text is legible. Used high-contrast text and background colors so that type is as legible as possible. Black text on white background for content. Paragraph text set at 12px.

· Avoid using all uppercase spelling in design elements. Mixed case is used.

· Avoid horizontal scrolling at 800×600.

· The most critical elements should be visible in the first screen of content, without scrolling.

3.3.3 General Screen Layout:

All buttons, labels, fields should be aligned vertically and horizontally and consistent across all applications.

Labels on buttons should be consistent and have same meanings across all applications and screens.

Use a colon and a trailing space after a text label preceding a text entry box or a list box. Do not use a colon after a text label in a group box or title bar.
Data Entry Fields -
Display-only fields do not have a border.

Updateable fields have a box border.

Length of the data entry field displayed should equal the commonly used length of the corresponding database field.

Use group boxes to contain a domain of choices or to gather a collection of related controls. If a control applies only to a section of the screen, that section of the screen plus related controls should be grouped in a box.

 Use colors only to draw the user’s attention to something or to increase real world consistency. If there is no reason to use color, use black on white or black on light gray.

Ensure that the Help menu contains the following items: Contents, Search, Using Help, and About.

Change cursor to “hourglass” to indicate a short wait (2-10 seconds). Show the user a progress indicator on the status line for a long wait.

Use beeps for two things only:

· To additionally warn user of potentially destructive action

· To notify user long wait is over

First Line On Screen
Includes facilities for: Close Application; Title Bar; Minimize Application to Icon; Size Application.
Close Application:

Exits the application and ensures that all open files have been closed. Prompts to save changes.

Title Bar:

Position - Top line of screen

First Part - Should be Name of Application

Last Part - Should be description/name of file, record or object on screen.

Minimize Application to Icon:

Exhibits standard Windows minimize button behavior.

Size Application:

Exhibits standard Windows Size Application button behavior.

Second Line on Screen
This line should include Close File; Menu.

File Close:

Closes the current file or record and ensures that the file has been saved.
Menu Bar:

If applicable, use standard Windows menu items and place in the standard order: File, Edit, View, your custom options, Window, and Help. Name of the application’s main record (like Participant) can be substituted for File.

Place the most frequently used items within a menu group toward the top of the menu group.

Ensure that commonly used functions have shortcut keys on menu items and menu pull downs. Mnemonic Shortcut keys should use Alt plus unique letter indicated by underlined letter in menu bar item. Pushing mnemonic shortcut keys results in pulldown menu. Within a pulldown menu, press just the unique underlined letter.

Shortcut functions keys access functions within a menu item without first having to pull down a menu item. Use Ctrl plus unique letter. Only most often used functions should have shortcut key of this type. Indicate existence of shortcut in pulldown menu.

Ensure no mnemonics or shortcut keys conflicts with standard Windows mnemonics or shortcut keys.

Place an ellipsis (…) after a menu item to indicate that further dialog will appear before a function is executed.

THIRD LINE ON SCREEN
If applicable, the third line should include an application tool bar.

Tool Bar:

Place most common accessed functions on a tool bar.

A user should recognize the function within 10 seconds of looking at the Icon.

Either descriptive caption should appear on toolbar button or a yellow popup tool tip should appear when the cursor hovers over tool bar Icon.

LAST LINE ON SCREEN
Last line is the status line.

Status Line:

First part - context sensitive help as cursor passes over areas on screen and/or short error or informational messages.

DIALOG BOX
Use group boxes to group related controls together.

Ensure each dialog box has a default non-destructive pushbutton that closes dialog box. The pushbutton should behave according to user expectations.

Ensure each dialog box has a title bar (same as name of menu item that invoked dialog), and do not allow resizing, minimizing, or maximizing of dialog boxes.

Re-use similar or the same dialog box to do functions common through out the application.

Place dependent controls beneath or to the right of the control they are dependent on.

Preserve user’s settings on common dialogs for as long as the current instance of the application is running.

Tab control should go top to bottom, left to right. Most common controls should be positioned first.

Choosing the appropriate control for each user task will result in higher productivity, lower error rates, and higher overall user satisfaction. Icon must be used every time.

3.4 Guidelines for good UIs:

1. Use Iterative design

1. Involve the user in the design team

2. Give the user a mental model of the system

1. Not just a bunch of ad-hoc features

2. Related to consistency

3. Visual cues can help = “affordances”

3. Good Graphic Design and Color Choices

1. Unordered List Item

2. Appropriately direct attention

3. Group related objects (alignment, decorations)

4. Balance and white space

5. Maintain display inertia

6. Few fonts and colors

1. appropriate contrast

2. some people are color blind

4. Less is More (“keep it simple”)

1. If complex to explain/document - redesign

2. Concise language

3. Avoid extraneous pictures and information

1. Fewer options and menu choices

2. Reduces planning time

3. Reduces manual size, etc.

5. Speak the User's Language

1. Use common words and minimize jargon, e.g. folder rather than directory.

2. Error messages and feedback refer to user objects

3. Allow full-length names E.g. “Hit any key to continue”

6. Use appropriate Mappings and Metaphors

1. Task analysis to understand user's domain

7. Minimize User Memory Load

1. Short-term memory

2. Recognize, not recall (generate)

3. Menus rather than type-in (but short enough)

4. Prompts provide format

5. Don't require retyping of remembered information

6. Pervasive, generic rules (cut/paste)

8. Be consistent

1. Same command always have the same effect

2. Locations for information, names of commands

3. Size, location, color, wording, function, sequencing, …

4. Following standards helps

9. Provide appropriate feedback

1. About what system is doing, and how input is being interpreted. “articulory” and “semantic”

10. Clearly marked Exits

1. Cancel buttons

2. Make all user actions easily reversible (undo)

3. Users (even experts) will make errors

11. Prevent errors

1. Selection rather than entry

2. Remove or grey-out illegal choices

3. Confirmation

12. Good error messages

1. Help users when they are in trouble

2. Opportunities for users to learn about the system

3. Clear language; no codes

4. Be precise. Not “syntax error”

5. Constructively help the user solve the problem?(tell why the error happened and how to fix it)

6. Be polite and not accusing; positive wording:

7. Blame the system, not the user

1. “Unrecognized” vs. “illegal” command

8. No humor or snide comments

9. Easy error recovery

13. Provide Shortcuts

1. For experienced users

2. Command keys, macros, styles, recent files

14. Minimize modes

1. Definition: same user action has different results

2. Make unavoidable modes visible

3. E.g. in XXX product, fillet uses invisible mode

15. Help the user get started with the system

1. No more than 1 simple overview screen to get started doing real work

16. Use cognitive directness

1. Minimize mental transformations

2. ^C rather than ESC-F7 for “Cut”

17. Accommodate individual differences

1. Novice and expert

2. Handicapped users

3. Customization

4. Source Code Documentation Standard
4.1 Source Code Documentation
Source code quality
A computer has no concept of "well-written" source code. However, from a human point of view source code can be written in a way that has an effect on the effort needed to comprehend its behavior. Many source codes programming style guides, which often stress readability and usually language-specific conventions are aimed at reducing the cost of source code maintenance. Some of the issues that affect code quality include:

· Readability
· Ease of maintenance, testing, debugging, fixing, modification and portability

· Low complexity
· Low resource consumption: memory, CPU
· Number of compilation or lint warnings

· Robust input validation and error handling.
Methods to improve the quality

4.1.1 File Comments

Every source code file should begin with a file comment block describing the contents.

Use CVS tracking information; at a minimum, use $Id:$ and $:Log:$.

Set a static variable to $Id:$ to capture file and version information in object files.

A file comment block should supply at least the following information:

Description

This section provides a brief overview of the file, including its purpose and relevance to the module. If a requirements specification was written, a cross-reference to the pertinent sections should be supplied.

Revision History

The revision history of the file should be maintained to track development and clearly identify authors. This history, listed in reverse chronological order, should contain the date of revision, the revision author, and a detailed list of changes made. CVS provides a mechanism to automatically track revision information. The "$" sign enclosed words, such as Id, are keywords used as parameters to be automatically updated. incorporates a running log of changes into the comments. For more information on CVS, see section 4.2

Exports

Every function and variable (method and object) made globally available should be explicitly listed in this section and followed by a short descriptive statement. This serves as a summary of the file's interface to the rest of the software system. See section 2.2 for rules regarding the scope of functions and variables.

4.1.2 Function Comments

All functions within a source file should be preceded by a function comment block which explains the purpose of the function and all its direct and side effects.

Do something to delineate function breaks, for example a line of "/*******/".

Each function should begin on a new page (which is achieved by inserting an ASCII formfeed, ^L, before the comment block) unless a few short functions can be grouped on one page.

^L

/**

 * FUNCTION: RenderRobot

 * DESCRIPTION: Use pose information to command rendering

 * rendering of robot model in the new position

 * INPUTS: robotPose - Robot position and orientation

 * robotConfig - Robot internal configuration

 * EXCEPTIONS: None

 * RETURNS: True if rendered, False otherwise

 **/

The function comment block should at minimum contain the following two fields:

Function

The name of the function or method. See section 2.5 for naming conventions.

Description

A textual explanation of what the function does. If a requirements specification was written, refer to the specific requirements that are satisfied by this function.

For most functions, one or more of the following fields is appropriate in the function comment block:

Inputs

The input parameters expected by function, including the data types and expected format.

Globals

The global variables referenced by the function (see section 2.6). This may be obviated by explicitly externing the globals within C++ methods.

Outputs

Most important, list any variables changed by pointer de-referencing. This means, even if the pointer to a struct does not change, make explicit whether the structure changes.

Exceptions

Global variables modified by this function (see section 2.6)
Errors

A list of any error conditions which are tracked and the error numbers set. If errors are thrown to calling routines this should be noted.

Returns

Possible values returned by the function and their interpretation.

Design

A description of the algorithms used by the function; clever hacks explained.

Notes

Anything not covered above which is important, including known bugs, possible improvements and necessary pre-conditions. Also, major assumptions in the algorithm or characteristics of the inputs.
4.1.3 In-Line Comments

An in-line comment is descriptive text appearing immediately before, after, or next to a section of source code. In-line comments are intended to guide the reader through an algorithm, explain the reasoning behind a statement that may not be obvious, or explicitly state assumptions made at a particular point in the program.

Do not center comments.

Keep the "*" (or if C++, the "//") aligned on the left.

Do not use right justified comments to make boxes. They waste a lot of time.

Comments must be easily visible. When documenting a variable or parameter declaration, comments should be placed on the same line as the declaration, and subsequent comments of this type should be aligned vertically. Some examples:

int renderCount; /* Counter for number of renderings */

float robotX; /* Robot's global X coordinate */

float robotY; /* " " Y " */

class robotConfig; // Robot model object

/*

 * Multi-line comments are typically used for complete sentences.

 * The leading "/*" and trailing "*/" sequences should be on a

 * separate line for better readability.

 */

4.1.4 README Files

Provide README files as a roadmap to the directories and files in the current directory and subdirectories.

README files are a convenient mechanism to provide a starting point for documentation of a software package. Provide one README file for each directory whose contents aren't obvious. For instance, top-level directories and "src" directories should have a README file.

The contents of a README file should: provide an overview of what the files in this directory do; describe how to build the executables and explain makefile targets; point out known problems, anomalies, side effects or caveats; and list documents that contain further information.
4.2 User Level Documentation

The purpose of user level documentation is to allow individuals other than the developers to run the software. In fact, for complex programs it is often useful even for the original authors of the code to have a reference guide on how to invoke and operate the program. An efficient and universally accepted method for such a reference is an entry in the Unix Programmer's Manual, a.k.a. "man page". Other operating systems provide similar on-line manuals.

At a minimum, a man page should give an overview of what the program does and document all applicable command line options and their effects. Typical sections of man pages, as well as information on how to create them, can be found in section 4.3.

A common problem that occurs during the development phase of software systems is that only the authors of individual modules know how to run their programs. To avoid the necessity of having all programmers present to run a complex software system, generation of man pages should not be left until after the program is completed.

Write a software requirements specification and design document before implementing code. The information in these documents can be quickly translated into man pages.

4.3 Libraries

Libraries of utilities or self-contained packages can also be documented with man pages, although it is sometimes more appropriate to produce a User's Guide with a word-processing program. Use common sense in deciding on a format, keeping in mind who the target audience is and how to communicate the relevant information effectively. Users of libraries are typically application programmers, who will initially need to read an overview of the library. Subsequently, they will require a reference guide periodically to look up detailed information on specific elements of the library. A table of contents and alphabetized index is essential.
4.4 Coding Style

4.4.1 Compilation

All code should follow ANSI C and C++ standards.

Use of ANSI C++ standards enables automatic checking for proper usage of procedure calls to external functions, as well as tightening up of a lot of loose ends in traditional C. A common compiler is specified in order to avoid any problems in linking between object modules and libraries.

4.4.2 Scope and Definitions

All function and variable types should be explicitly defined, including those of type "void" and "int", but excepting class constructors and destructors.

Functions and variables of local scope (used only within the file) should be declared as static. By implication, functions and variables not declared static are intended to be globally available.

This practice minimizes the number of functions and variables seen globally across files during linking, and improves modularity of the software.

4.4.3 Indentation

A tab character, when used, will always move the cursor to the next column which is a multiple of eight spaces.

No line must be longer than 79 characters unless absolutely necessary.

The above two rules improve printability of the source code. Most printers and editors truncate lines to 79 characters, and assume that a tab always moves the cursor to a column which is a multiple of eight spaces.

The number of spaces to use for indentation is up to the programmer. However, files which contain tab characters must assume that they will be interpreted as eight space tab stops. This ensures that programs will look the same when viewed with different editors or printed with different code formatters. If you do not want to indent your code in eight space increments, you must insert space characters. For example, if your preference is to indent by 4 spaces, 4 space characters must be inserted for the first level of indentation. However, the next tab stop may contain a tab character (moving the cursor to the eighth space), or four more spaces. Note that most editors like emacs can be configured to do all of this automatically.
4.4.4 Braces

Use braces even when blocks of code contain only a single line.

Functions are marked by braces on separate lines, whereas all other blocks begin with a brace on the same line as the conditional. It is recommended that single line blocks also be marked by braces. This is considered good style since it prevents the programmer from later adding a line to the conditional while forgetting to add braces.
A code fragment using this method looks like:

void function()

{

if(condition) {

...

} else {

if(condition) {

...

}

}

switch(condition) {

case 0:

...

break;

case 1:

default:

...

break;

}

return;

}

4.5 Identifier Naming Style

Consistent use of a naming style for identifiers significantly improves code readability, allowing new programmers to easily determine the kind of identifier being referred to (macro, typedef, variable or function) and to get an idea of where to find the declaration of that identifier. The goal of the following rules and guidelines is to distinguish between different classes of identifiers by dictating the use of upper and lower case, underscores and suffixes.

4.5.1 Functions

The first letter of each word in the function name will be in Upper case. Words will be distinguished by initial capitals but not underscores or hyphens.

The first word of all exported functions will be a common name or acronym identifying the declaring module.

There are two purposes behind these conventions. One is to prevent name clashes that can arise when linking together modules written by different people. The other is to help locate the declarations of functions and provide a context for readability. For example, a function named SimUpdateDisplay() provides an obvious hint as to the context of the display update operation in question.
4.5.2 Variables

The first word of every variable name will be in lower case. Any additional words will be distinguished from the first word by initial capitals.

The first word or letters of exported variables and functions (objects and methods) should be the same to identify the declaring module.

you can assign a variable to a function or pass a function as a variable. Therefore the two are treated similarly.

The following declarations are valid:

int controlSemaphoreGlobal; /* An exported global variable*/

static int errorValueStatic; /* A local variable */

void controlMove(void); /* A global function */

{

extern controlSemaphoreGlobal;

float robotX, robotY, robotYaw;

register int i; // Index

}

static int countDracula(void) /* A local function */
{

int bah, ha, hah;

}

4.5.3 Macros

All macros must be in all-caps, with underscores separating multiple words.

For example:

#define DEGREES_OF_FREEDOM 1776

In C++, never use macros, instead use consts for constants and inline functions (which allow type checking) for short calculations.

4.5.4 Types

All typedefs should be in all-caps, with underscores separating multiple words. In addition, suffixes will be appended indicating one of four categories: "_ARRAY" for arrays, "_PTR" for pointers, "_ENUM" for enumerated types, and "_TYPE" for everything else.

The first word of elements of an enumerated type will start with an uppercase letter followed by lower case letters. Any additional words will be distinguished from the first word by initial capitals.

Typedefs are similar to macros and are therefore subject to the same capitalization rules. Recursive data structures will use the same type name preceded by an underscore for their declaration.

Enumerated types are essentially a type declaration and several macros definitions combined. The only difference is that the type specification of an enumerated type is followed by _ENUM rather than _TYPE.

Examples:

typedef int IMAGE_ARRAY[100];

typedef struct _LIST_TYPE {

int kind;

struct _LIST_TYPE *next;

} LIST_TYPE, *LIST_PTR;

typedef enum {Red, Green, Blue} RGB_ENUM;

4.6 Global Variables

Global variables must be fully documented as to purpose, what modules access the variable, and under what conditions access occurs.

Use static variables and access functions for modifying their values instead of global variables whenever possible.

If using C++, consider implementing a class with private data and public methods for accessing and modifying the data.

The use of global variables should be minimized to justifiable cases. Global variables are difficult to debug and hard to understand when looking through someone else's code. Most often, they can be replaced by static variables and access functions for modifying their values. This method restricts access to them to specific functions and facilitates the use of "stop in <function>" when debugging with dbx.

An example of a static variable with access functions (in the file status) is as follows:

static int currentStatusStatic;

void StatusSet(int value)

{

/* Error checking on value... */

currentStatusStatic = value;

}

void StatusGet(int *value)

{

*value = currentStatusStatic;

}

Or even better in C++:

class Status {

private:

int value;

public:

Status() {value = 0;}

~Status() {value = 0;}

inline void Set(int v);

int Get(void){return(value)};

};

void Status::Set(int v){

// Check v is acceptable

value = v;

return;

}

4.7 Header Files

4.7.1 Contents

Header files (ending with the ".h" suffix) should contain only macros, consts, type (and class) definitions, external functions, or external variable declarations.

All exported functions and variables should be declared in a header file.

Public header files (those installed into the public include directory) will be as minimal as possible. ONLY those macros, types and external function headers needed to access the module are to be declared. Definitions internal to a module should be put in a separate file.
Under no circumstances should any kind of data storage or actual code be declared in a header file. For obvious reasons, comments are as appropriate in header files as in source code files. Macros or type definitions local to a single source file may reside within that source file if they are reasonably small in number.
4.7.2 Nested Inclusion

Nested inclusion protection should be incorporated into every header file.

It is permitted to nest inclusion of header files; this can alleviate constraints on the ordering of #include statements in source files. However, if this technique is used, care must be taken to avoid multiple inclusion of the header files, which will lead to compiler warnings. A common mechanism to prevent this is to bracket the entire body of a header file with the following statements:

#ifndef INCheaderfileh
#define INCheaderfileh

/* Body of Header File */

#endif INCheaderfileh

The macro name - "INCheaderfileh" in the above example must be unique for each header file, and is usually formed by pre-pending "INC" to the file name and removing the period.

4.8 Directory Structure

The purpose of a directory hierarchy is to group files in a logical fashion according to their purpose. The goal of standardizing structure is to avoid having to untangle cross references and file dependencies that can result from using an ad-hoc structure.

This discussion focuses on the structure of the software subdirectory.

The top level directory of a software project contains eight subdirectories: Master , bin , lib , include , src , man , doc , and data .

It is strongly suggested that no other directories or files be created at the top level; all software files should reside under one of these subdirectories. Allowing other directories at this level would defeat the purpose of a standard directory structure.

The software project directory should always contain the most recent or most functional version of the software.

Only code that is reasonably stable should be deposited in the software directory. This way, project team members know where to find usable code developed by other team members without having to look through personal workspaces of others. At the very least, the makefiles should be set up correctly and all code should compile and run.

Maintain a personal workspace with a set of the standard directories and use CVS to maintain copies of all files you need to modify.

Once you have a working version of your code, commit it with CVS and update the project directory. At this time you can "make install" in the project src directory to compile and install the header files, libraries, etc. into the appropriate places.

Source code should be developed and edited in personal work spaces.

When a stable version of the source files has emerged, they are deposited into the project directory's src, doc or data directory, as appropriate. Compilation is then performed in the src directory, followed by installation into bin, include, lib and/or man (see below for more details on installation).

Only the src , doc and data directories contains files created by developers.

The src directory is the location of the primary source for software and manual pages, which is generated by the programmer. This forces related files to exist together in a single directory, making maintenance and revision simpler than having to track multiple directories. Furthermore, this enables the programmer to use CVS to maintain complete revisions of source files, header files and manual pages by maintaining a single directory. Using standard Makefiles makes installation of these files efficient.

The doc and data directories contain documentation and data files which are typically neither subject to revision control nor generated from sources; thus they are updated directly by the programmer.

All files found in bin , lib , include and man are installed by copying corresponding files from within the src directory hierarchy.

Object code (executables and libraries) is compiled in the src area from source files and installed in bin or lib. Header files to be shared with other modules are installed in the include directory hierarchy, and manual pages are installed in the appropriate man subdirectory.

None of the files in bin , include , lib and man should have write permission for anyone, including the owner.

Note that the directories will have write permission, but the files will not. This prevents accidental modification of installed copies of files since the files will not be editable. However, the directory has write permission which allows a programmer to delete or install files into these directories. This helps enforce the rule that you must work in the src directory and install copies of the files in src into bin, include, lib and man.

4.8.1 Master Directory

The Master directory is the CVS repository of the entire software project. It is imperative that there be only one single Master directory.

The contents of the Master directory should only be accessed via CVS utilities.

Under normal circumstances, programmers shouldn't have to examine or change anything in the Master directory, since its contents are managed by the CVS tools.

4.8.2 Bin Directory

The bin directory contains only executable scripts and operating system subdirectories, which in turn contain executable programs.

The bin directory contains all executable programs generated by the project. All corresponding source files must be located under the src hierarchy, even if they are scripts that are installed by simply copying them to the bin directory.

4.8.3 Lib Directory

The lib operating system subdirectories contain libraries and object files to be shared across modules.

The lib directory contains only compiled object files or library archives; no other types of files are allowed. The corresponding source files should be located under the src hierarchy.

The lib operating system subdirectories may contain subdirectories for a module of libraries and object files to be shared within that module.

Only if necessary, for example with a module that consists of many submodules, a module may install, to a subdirectory, private libraries shared among its submodules. A subdirectory under lib should have the same name as the corresponding module directory under src.

4.8.4 Include Directory

The include directory contains header files to be shared across modules.

The include directory contains all the header files needed when using the object modules and library files located in lib . No other types of files are allowed.

The include directory may contain subdirectories. These subdirectories contain header files to be shared among submodules of a single module.

The same scope rules stated for subdirectories under lib apply to the include hierarchy.

4.8.5 Src Directory

All source code files, header files and manual pages will reside in the src directory.

All libraries and executables will be created by compiling the files in the src directory.

The src directory contains all the source files necessary for generating the bin , include, lib, and man directories. The src directory is considered to be private, in the sense that the general user should never have to go into src in order to run an executable, look up a man page, link a library, or search for documentation. All files necessary for public reference are to be located in bin, include, lib, doc and man . There are only two reasons to go into the src directory: to create or update source files, header files or manual pages; or to examine source files because a bug is suspected or to find out "how things work".

Do not work directly in the project src directory`

Its contents may be overwritten by another person at any time and your changes may introduce a bug that would affect others. The src directory is to be used only for "publishing" reasonably stable code, and for compiling and installing the new code into the bin, man, etc. directories. Work in your private source directory and use CVS to update the project release area.

A source file should include header files from only:
The current working directory
The project include directory (/project/include/*.h)
The module include subdirectory (/project/include/module/*.h)
The project include operating system subdirectory (/project/VxWorks/include/*.h)
Non-project related include directories (/usr/local/include).

An object file should be linked with object code from only:
Object files compiled in the current working directory
Libraries in the project library directory (/project/lib/*.a)
Libraries in the project library operating system subdirectory (/project/lib/IRIX/*.a)
Libraries in the module library subdirectory (e.g. project/lib/module/*.a)
Non-project related libraries (e.g. /usr/lib/libX11.a)

The files in the src directory should never depend on header or library files in another src directory.

4.8.6 Man Directory

The man directory must conform to the standard UNIX man directory format.

As files get put into bin and lib , generate the corresponding man pages and install them in man .

The man directory will contain only subdirectories of the format man<n> and cat<n>, and the special file whatis. The "<n>" represents the section of the manual, which is typically a number between 1 and 8. The manual sections applicable to project-generated software are:

· man1: User Commands - These correspond to executables in the bin directory.

· man3: Subroutines - Man pages describing libraries in the lib directory.

· man5: File Formats - Definitions of data file formats found in the data directory.

4.8.7 Doc Directory

The doc directory contains documents related to the code in the src directory only.

Create subdirectories under doc to organize documents in a logical fashion.

The doc directory is a place for any additional documents related to the body of code in this directory tree. Academic papers, design documents, proposals or notes are all examples of documents that might reside here. A running log of bug reports might also be archived under this directory.

4.8.8 Data Directory

The data directory contains configuration files, log files, etc. used by the programs in bin.

The data directory is an area intended for files referenced by the software system at run-time, such as data output logs and input parameters of experiments, session logs, kinematic configuration data and system state files.

4.9 Tools and Utilities

4.9.1 Makefiles
Make files are required for compilation of source files as well as for generation and installation of libraries, include files, executables and documentation into their designated public directories. In general, most users experience problems with make file incompatibility when executing different versions of make . It seems that each version of make has its own idiosyncrasies.

The goal in setting up the following makefile standards are twofold. First, adoption of a standard itself will allow increased proficiency in being able to decipher another person's makefile. Second, the standard makefile will be tolerant of idiosyncrasies across different versions of make . Developers that customize makefiles should do so in a way that will not defeat these two goals.

All makefiles will be named "Makefile," with a capital `M'.

This is a default name assumed by many programs, and visibly distinguishes the makefile from source files which typically start with a lowercase letter.

All makefiles will have at least the following targets defined: all, install, and clean. Performing a "make all" must be equivalent to performing a "make."

all

Usually, "all" is the first target specified. Make makes this target (the first one) when no targets are specified on the command line. Typically, this target will generate all library files, object files, and executable files associated with the source files in the current directory. This target should not install files into the public directories.

install

This target will install all files to be used by the public into the public directories. Object and library files go into lib, header files go into include, executable files go into bin, man pages to man. The install target should make all first.

uninstall

The uninstall target, cleanly retracts everything that has been installed.

clean

The clean target is used to clean up a directory. All files that can be generated from the source files are deleted. Typically, all that will remain after a "make clean" operation will be *.cc, *.c, *.h, and the Makefile itself.

Building from scratch may look like:

> cvs update module

> cd module

> make install

> make clean

4.9.2 CVS
Use CVS.

CVs is a package that offers great convenience to the programmer. CVS keeps a single copy of the most recent master sources. This copy is called the source "repository;" It contains all the information to permit extraction of previous releases at any time based on a user-specified tag of time, date, etc. The user gets files from the repository and places them in his local workspace where he can then change the files. If the change is satisfactory, he can "publish" the change. CVS also allows for multiple users to modify a file. It also provides for the retrieval of old releases.

APPENDIX A
Software configuration Management standard
Software configuration management is the process of controlling and monitoring change to work products. Once a baseline is defined, software configuration management minimizes the risks associated with changes by defining a formal approval and tracking process for changes.

The first function of configuration management is the identification of configuration items. Which subsystems are likely to change? Which subsystem interfaces should not change? Each subsystem likely to change is modeled as a configuration item and its state labeled with a version number.

 The second function of configuration management is to manage change through a formal process. The change is then approved or rejected, depending on the foreseen impact of the change on the overall system.

Finally, the third function of configuration management is to record sufficient status information on each version of each configuration item and its dependencies.

Configuration management programs shall contain the following elements:

· Consistent, unique identification of the configurations of Software components over the lifecycle of a system, from development through testing and ultimately, operations.

· Documented change control for coordination of all changes/updates to infrastructure configuration changes consisting of application software versions/releases, including when and by whom.

· Status accounting to track the state of all configuration items, pending changes, and approved changes to configuration items.

�
�
Amhara National Regional State Information and Communication Technology�
�
�
�
Software Development Standards and Guidelines�
�

aictda

August , 2011

Amhara National Regional State

System Development and Administration

 AICTDA

